

Scale-up with virtualised Integrity servers

Ken Surplice

Business Critical Systems HP Europe, Middle East, Africa

Want to combine reduced costs, continuous availability and rapid installation of new Oracle instances?

How can we help each other?

You Me

server and software

A bit about me

CONT

PARTNERS

DEMONSTRATIONS

EVENTS

LOCATION

ETC HOME

STANDARD PRESENTATIONS

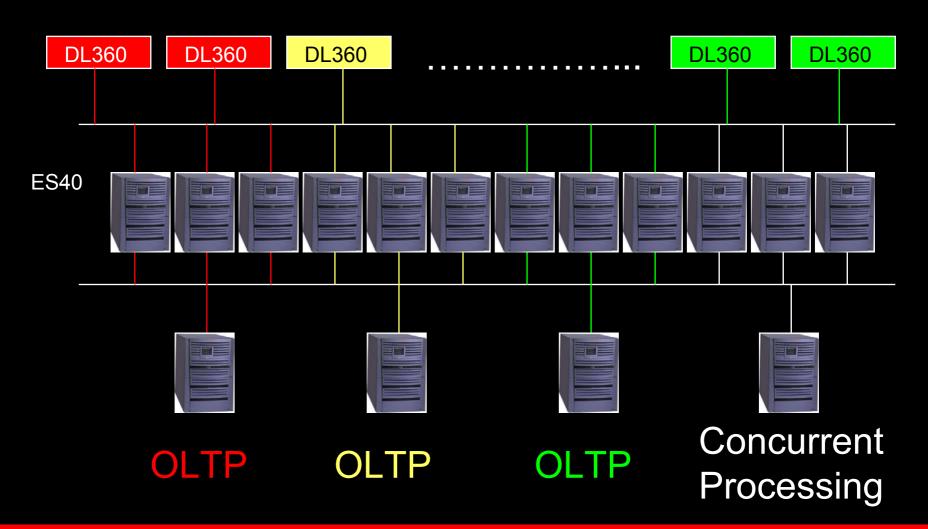
EMEA Enterprise Technology Centre

The Enterprise Technology Centre is a Oracle Europe, Middle East and Africa (EMEA) facility located in Oracle UK Headquarters at Thames Valley Park, Reading, UK. We have been fully operational since April 1999, and have hosted over 400 customer visits.

Our key mission is to ensure organisations are successful in choosing and deploying the most appropriate technology solutions to meet their business challenges. We achieve this by showcasing Oracle and Partner products and joint technologies and advising on the most appropriate complimentary solutions that meet each organisations unique requirements.

Technical / business presentations and discussions are significantly enhanced by a suite of compelling demonstrations which validate these products and joint technologies.

If you are considering High Availability, Disaster Recovery and Consolidation in your Data Centre, we are able to focus on specific areas of Oracle's Maximum Availability Architecture (MAA) and provide proof-points to reinforce the message.


For more information on how the ETC can help you or your customers, e-mail the ETC at etc_emea@oracle.com

Copyright © 2003, Oracle Corporation. All Rights Reserved.
Screen clipping taken: 07/10/2008, 10:57

About Oracle | Contact Us | Legal Notices and Terms of Use | Privacy Statement

Overall Picture

9i Real Application Clusters

- Scalability
- Availability
- Reduce Total Cost of Ownership
 - Hardware Procurement Costs
 - Database Server Consolidation

You?

Use HP

Use Integrit y Itanium Use HP 9000

Use UNIX

Use Alpha

Use Blades

Use ProLian t x86

Use Windows

> Use Linux

Objectives for today

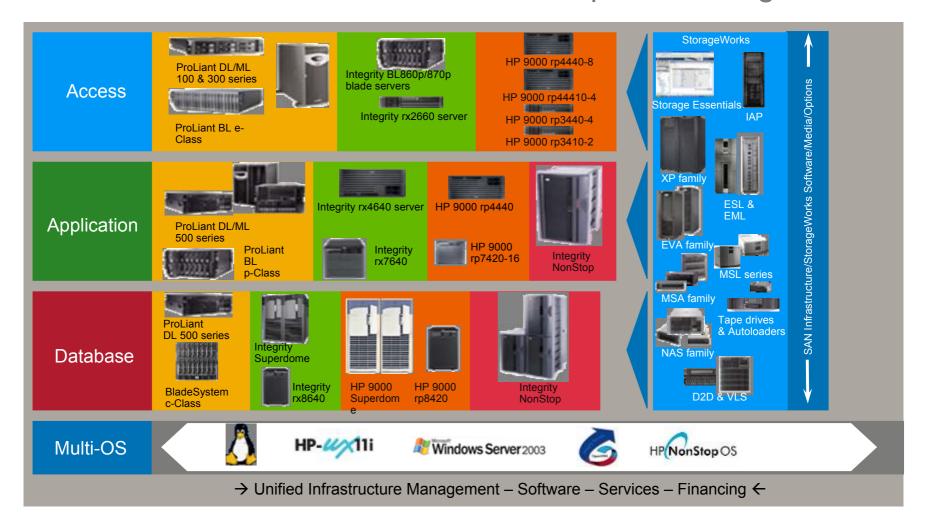
What

- Save you money
- Deliver more to your business
- Simplify
- Standardise
- Get your weekends back

Benefit from Integrity (Itanium) servers

How

- Scale-up, stack-up, to reduce instances
- TCO study


volume

- Standardise "goodbye RISC"
- Apply Serviceguard Storage management suite
 - High availability
 - File system simplicity with near raw performance
- Apply common datacentre management

Common enterprise building blocks

The world's broadest, most robust enterprise offering

"There is no more important partner for Oracle, and there is no more important platform for Oracle than HP Integrity and Itanium"

Larry Ellison
CEO of Oracle Corporation
March 2006

HP Integrity servers: The broadest line of Intel® Itanium® based systems

	128	HP Integrity Superdome Server		100	cnipset		Up to 64p/128c scalability and hard-partitioning capability for leading consolidation
Number of cores per system	32	HP Integrity rx8640 Server with I/O Expansion Unit	processor	sx2000 ch			16p/32c scalability and hard-partitioning capability for consolidation
	16	HP Integrity rx7640 Server	Itanium pr		SO I		8p/16c flexibility with high-performance, density, and hard-partitioning capabilities
	8	HP Integrity rx6600 Server	Intel				4p/8c highly expandable entry-class platform for workload consolidation and virtualization
	4	HP Integrity BL870c Server Blade	New dual-core	•	*		4p/8c Itanium-based server blade provides simplified management and added flexibility
		HP Integrity rx3600		chipset	metal.	2p/4c powerful entry-class workhorse for database & application environments	
		HP Integrity rx2660 Server	Ž		ZXZ CI		2p/4c high-performance, server for multi-purpose entry-level computing
	4	HP Integrity BL860c BL870c Server Blades			N		2p/4c 4p/8c Itanium-based server blade

How do you choose?

Your choice: scale-out or scale-up?

- ✓ Reliable
- ✓ Predictable
- ✓ Secure
- √ Scalable

Where does your money go?

Direct one-time Costs

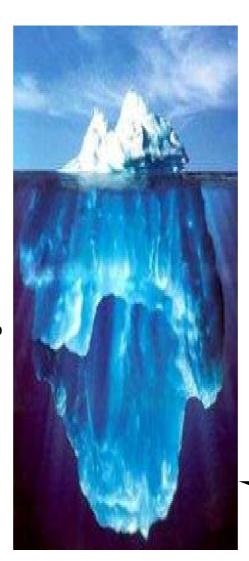
Hardware – 7% Software – 9% Support – 9%

+ On-going Costs

Communications – 3%

IT Operations & Administration – 25%

Facilities – 2%


Changes – 4%

Availability – 21%

Security – 12%

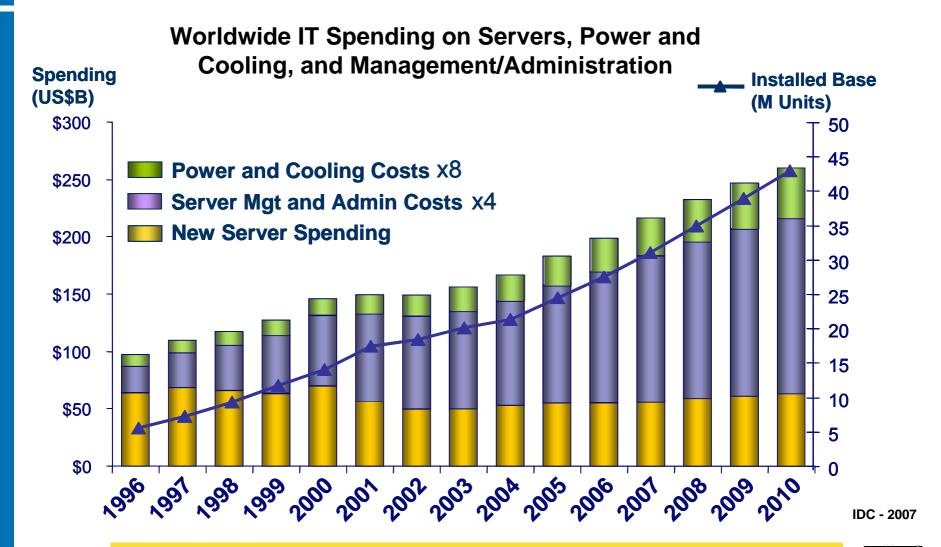
Application

Development – 8%

Lower costs through:

Virtualization; optimized asset utilization, availability & control lowers cost & risk of unplanned downtime

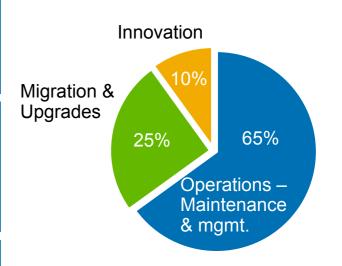
Security; prevent, detect, and contain


Availability; clustering, disaster tolerance & recovery, dynamic tunables

Management; seamless single asset view & control

Economic Impacts on IT:

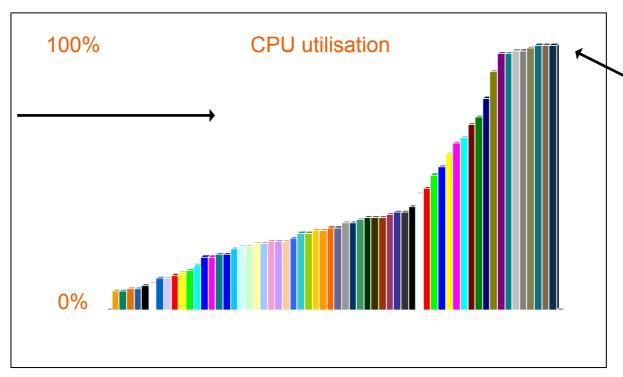
Management and Power & Cooling Costs Ramp Dramatically



Data center challenges

- Rapidly respond to business and customer needs
 - Struggle to meet service level agreements for critical workloads
 - Can't implement new projects fast enough
 - Need agility to respond to changing business needs
- Reduce costs of operations and maintenance
 - Too many applications, too much customization
 - Underutilized servers
 - Escalating power and cooling costs
- Enhance quality of service to enable business success
 - Need to ensure business continuity
 - Protect critical resource and data assets
 - Meet Compliance requirements

IT budget allocation


Not enough investment in innovation; too much in maintaining legacy infrastructure

Shift resources from maintenance to innovation

Plenty of power but in the wrong place

unused capacity

Yet these systems are unable to handle the load

- Most reports put average utilization at approximately 30%
- Some applications still not able to meet performance requirements

Making the right decision

Hints and tips for you

Customer themes today

"Choosing is loosing"

Do you have the same problems as last year?

Does the real problem go unsolved?

If you do not transform, you get more of the same

Automation – too hard vs. off the shelf

Challenge: IT forecast of demand

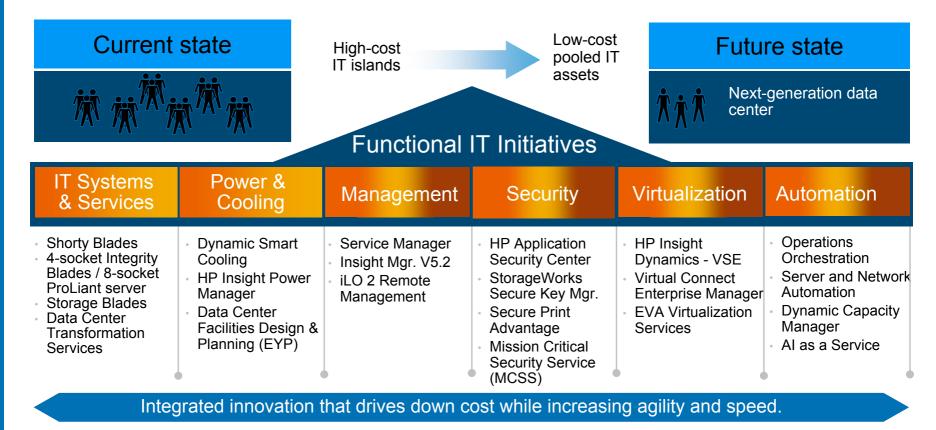
Service oriented infrastructure

Lights out

Zero touch

From "my needs, my solution" to "my needs; do it for me"

Move to low cost assets


Modular, repeatable environments

High availability and disaster tolerance built-in

Adaptive Infrastructure same for all servers/operating systems

Avoid "choosing is loosing"

Standalone capabilities that drive more efficiencies in the data center.

Enterprise servers for HP-UX, Windows, Linux, OpenVMS

x86

Fewer hardware instances

Fewer software instances

HP BladeSystem

Virtualisation

Polyserve

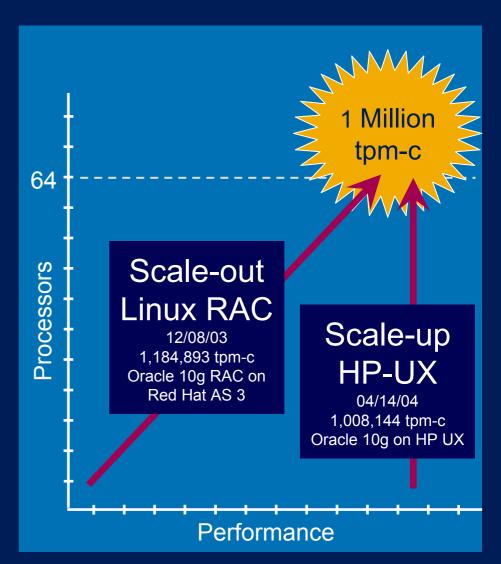
Scale-up Integrity

Bigger, fewer, virtualised instances

Reduced management Dynamic workload control

Reduce TCO

Further reduced TCO

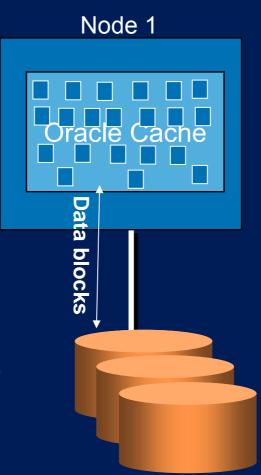

Case study: tpc-c benchmark configurations

Can RAC scale? Yes!

How did we do it?

- HP and Oracle first to break 1 million tpm-c
 - UNIX and Linux
 - Both with same # of Intel Itanium processors
- HP sets the bar for Oracle
- Linux RAC TPC-C
 - 16 nodes x 4 Itanium processors
 - Red Hat Linux AS 3
 - HP StorageWorks MSA100
 - Gigabit Ethernet interconnect

Oracle single instance database

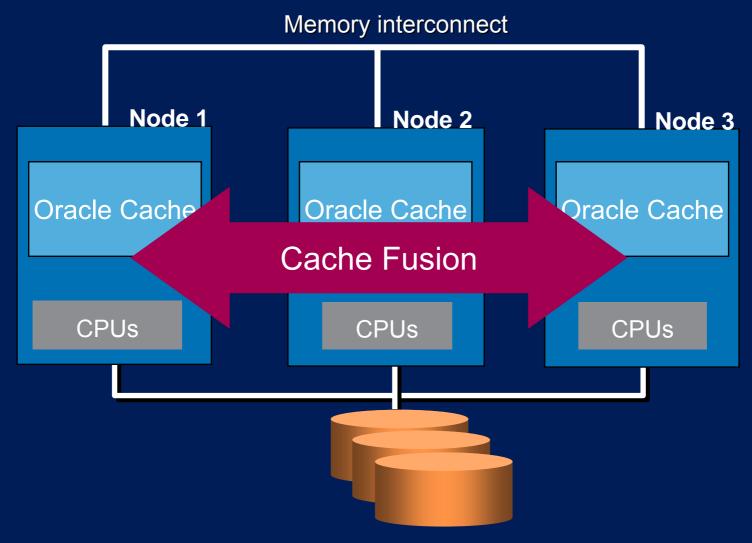

Thousands of

data accesses from memory can occur while one block is fetched from storage

- 1. First job runs
- 2. Second job runs

. . .

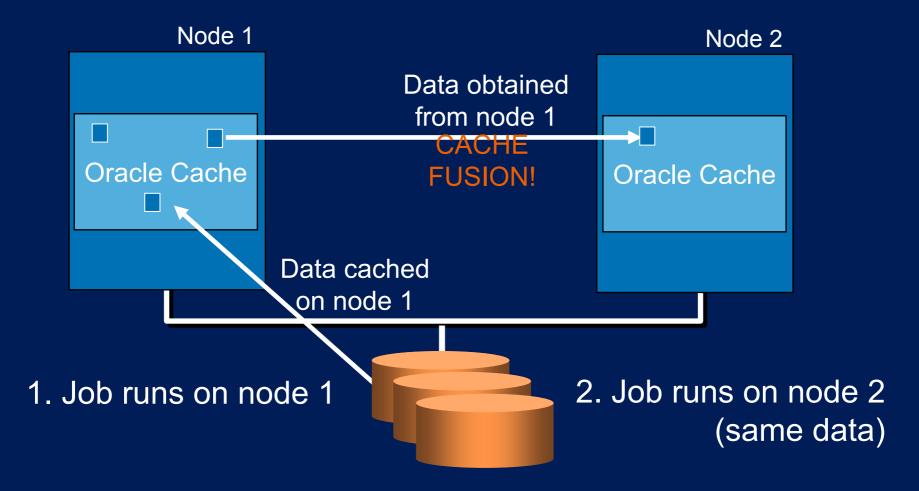
n. Next job runs


Data in memory is accessed in nanoseconds 1/1,000,000,000 second

Data on disk is accessed in milliseconds

1/1,000
second

Oracle clustered database technology Real Application Clusters



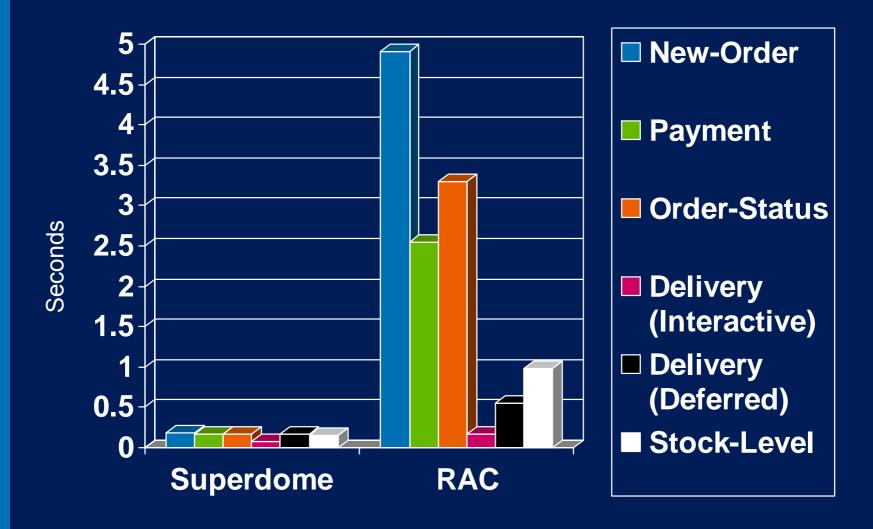
23 October 2008

An example of cache fusion

observe: latency across nodes

Performance characteristics Cache fusion vs. SMP backplane

Performance characteristic	Cache	HP-UX internal memory	
	1 Gb Ethernet	10 Gb Ethernet	backplane
Data rate	1 Gbps	10 Gbps	320 – 1024 Gbps
Latency	Appreximately 60,000 136–324x Faster!	Approximately 20,000 ns 51–108x Faster!	240 – 440 ns 185 – 395 ns
Estimated average CPU utilization	50%	50%	Less than 1%


Ways to make RAC scale

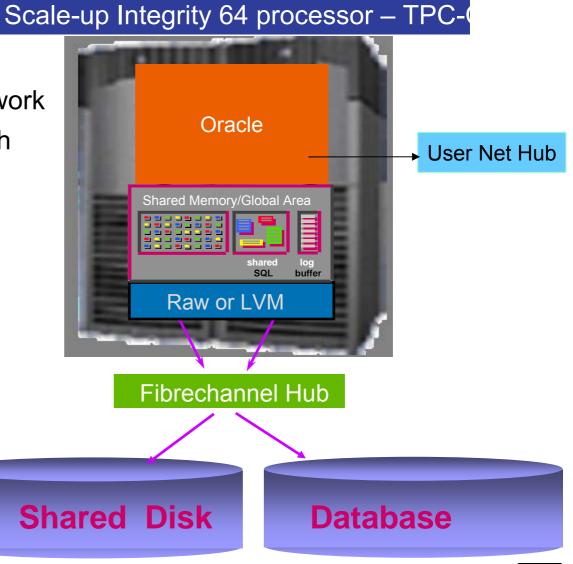
Make 2 discrete sets of work and data

tpmC User Response times

23 October 2008

Time and effort to deploy solution

Install & configure Oracle on a scale-up server


Steps to deploy

- Set up server
- Install NICs for client network
- Connect to network switch
- Connect to SAN switch
- Install OS

Install Oracle
Define Oracle data

. . .

MAINTAIN TROUBLESHOOT

Time and effort to deploy solution

Storage Area Network

Install & configure Oracle on a RAC cluster

Steps to deploy

Set up server 1

Install NICs

- two for RAC interconnect
- two for client network
 Connect to network switches
 Connect to SAN switches
 Cross connect SAN switches
 Install OS
 Define dual pathing to SAN
 Define Virtual IPs

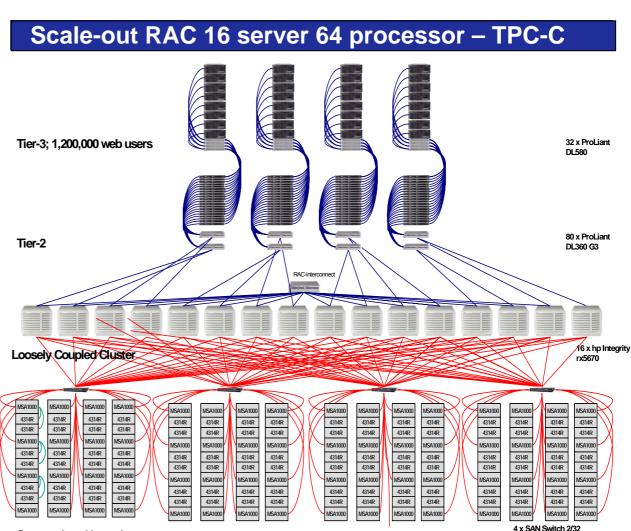
. . .

REPEAT FOR SERVERS 2-16

Initialize

- cluster vote disk
- cluster repository

Install on server 1


Cluster Software Advanced Storage Mngt

REPEAT FOR SERVERS 2-16

Install Oracle RAC Define Oracle data

. . .

MAINTAIN TROUBLESHOOT

64 x MSA1000 2240 x Disk Drives

RAC Application Usage Summary

Applications that will work

- Partitionable by function e.g. Order Entry and General Ledger
- Partitionable by data e.g. date range or alpha numeric
- Partitionable by users
- Read intensive applications
- ISV applications that have been certified with RAC e.g. Oracle ebusiness suite

Applications less well suited

- Monolithic application
- OLTP write intensive applications e.g. > 30% writes
- Batch intensive applications that may only run on one node
- ISV applications which have not been certified with RAC i.e. Siebel
- OLAP
- Single threaded application fastest CPU (e.g. Oracle Supply Chain Planning)

Application design for scale up / out

Application	Scale Up	Scale Out
SAP R/3 app server	+	+++
SAP BW/APO & Oracle ASCP	+++	
Siebel app server	+	+++
Oracle app server	+	+++
MS Exchange	+	+++
Web Infrastructure (web serving, firewall, proxy, DNS)		+++
Database OLTP	+++	+-
		(RAC)
Business Intelligence (OLAP)	+++	+
		(very few queries suited to scale out)
Java BEA WLS	+	+++

Typical characteristics of application scalability

Oracle Real Application Clusters

Applications not suited for RAC Best for Scale Up	Applications that can scale on RAC
Monolithic applications (majority of legacy applications)	Applications can partition by function, data, and users
CPU intensive workloads (such as demand planning)	Discrete, smaller workloads
Write intensive workloads (such as customer billing)	Read intensive workloads (such as data reporting)
Large OLAP/data warehousing workloads	Smaller, partitionable data warehouse workloads
Applications not certified by vendor for RAC	Applications certified by vendor for RAC
Applications that are <u>dynamic—that have</u> <u>"burst" workloads</u>	Applications that are static—that have predictable workloads

Other considerations

High Availability

RAC makes the <u>database</u> highly available

BUT

Availability depends on MORE than just the database instance

- RAS of hardware and operating system
- Complexity of the system
- Ability to patch or upgrade the database

Another option:

Service Guard for failover of a single instance database

Reduces planned downtime with rolling upgrades

23 October 2008

Other considerations Cost

Cost of hardware and software needs to be reviewed

Initial PRICE of servers is cheaper

BUT

- Cost of additional network cards and switches
- Higher Oracle software costs

Oracle licensing & porting strategy

- Licensing:
 - Generally 1 license per core with few exceptions
 - Itanium dual-core CPUs: 0.5 license per core
 - RISC dual-core CPUs: 0.75 license per core

Virtualisation – where to start?

We don't have the time to do it

Enables very dense computing, but can you cool it?

To move to low cost assets, need an adaptive infrastructure

How do you take savings from infrastructure and move them to applications development?

Everything: IP networks, storage, servers

Getting real return on your investment

Does your total cost of ownership include:

- Purchase price
- Support
- **▼** Staff
- Facilities and overhead
- Change costs

How to achieve 20-30% TCO savings:

- HP Integrity servers
- Virtual Server Environment
- HP Blades
- HP Storageworks, HP Storage Essentials

iCAP

- Purchase for average utilization and provision for peak with iCAP cpus
- Create failover nodes that expand to support the failover with iCAP
- What is iCAP
 - Cpus installed in a server but which are not purchased
 - A license to activate cpus for purchase at a later date
 - A conversion to purchase at the price when purchased
 - Refundable iCAP licensing fee at time of purchase
 - iCAP has no operating environment software costs
 - iCAP has no support costs
 - iCAP cpus have 5 days of temporary activation with each iCAP cpu

